On the Construction of Separable-Variables Conductivity Functions, and Their Application for Approaching Numerical Solutions of the Two-Dimensional Electrical Impedance Equation

نویسندگان

  • M. P. Ramirez
  • R. A. Hernandez-Becerril
چکیده

We analyze a technique for obtaining piecewise separable-variables conductivity functions, employing standard cubic polynomial interpolation. Our goal is to start making possible the practical use of the Pseudoanalytic Function Theory in medical imaging, by allowing the construction of numerical solutions, in terms of Taylor series in formal powers, of the twodimensional Electrical Impedance Equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for the Three-Dimensional Electrical Impedance Equation and its Application to the Electrical Impedance Tomography Theory

—Using a quaternionic reformulation of the threedimensional Electrical Impedance Equation, and a generalization of the Bers generating sets, as well as the Beltrami equation, we introduce a new class of exact solutions for the case when the conductivity is represented by a separable-variables function depending upon three spacial variables. Finally, we discuss the possible contribution of these...

متن کامل

On the General Solution of the Two-Dimensional Electrical Impedance Equation for a Separable-Variables Conductivity Function

—We analyze the structure of the general solution of the two-dimensional electrical impedance equation in analytic form using Taylor series in formal powers, for the case when the conductivity is a separable-variables function only once derivable, using a quaternionic reformulation that leads us to a special kind of Vekua equation. Finally, we broach its applications in the eld of electrical im...

متن کامل

First Characterization of a New Method for Numerically Solving the Dirichlet Problem of the Two-Dimensional Electrical Impedance Equation

Based upon the elements of the modern pseudoanalytic function theory, we analyze a new method for numerically solving the forward Dirichlet boundary value problem corresponding to the two-dimensional electrical impedance equation. The analysis is performed by introducing interpolating piecewise separable-variables conductivity functions in the unit circle. To warrant the effectiveness of the po...

متن کامل

Investigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation

In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011